Вариант № 38856

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 391
i

Функ­ция y= дробь: чис­ли­тель: 1, зна­ме­на­тель: \ctgx конец дроби не опре­де­ле­на в точке:



2
Задание № 392
i

На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1 см х 1 см изоб­ражён па­рал­ле­ло­грамм. Най­ди­те его пло­щадь в квад­рат­ных сан­ти­мет­рах.



3
Задание № 843
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на фор­му­лой n-го члена an  =  6n + 1. Най­ди­те раз­ность этой про­грес­сии.



4
Задание № 754
i

Ре­зуль­тат раз­ло­же­ния мно­го­чле­на x (a − 6b) + 6ba на мно­жи­те­ли имеет вид:



5
Задание № 1032
i

Зна­че­ние вы­ра­же­ния 8 ко­рень из 3 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та равно:



6
Задание № 906
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a2,9
b1148,7


7
Задание № 877
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 9 : 5 : 4. Най­ди­те гра­дус­ную меру угла ABC.



8
Задание № 728
i

Пусть a  =  6,7; b  =  4,3 · 103. Най­ди­те про­из­ве­де­ние ab и за­пи­ши­те его в стан­дарт­ном виде.



9
Задание № 609
i

Одна из сто­рон пря­мо­уголь­ни­ка на 3 см длин­нее дру­гой, а его пло­щадь равна 88 см2. Урав­не­ние, одним из кор­ней ко­то­ро­го яв­ля­ет­ся длина мень­шей сто­ро­ны пря­мо­уголь­ни­ка, имеет вид:



10
Задание № 760
i

Из точки A к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и AC и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти O. Точки B, С, M лежат на окруж­но­сти (см. рис.). Из­вест­но, что BK  =  2, AC  =  9. Най­ди­те длину от­рез­ка AK.



11
Задание № 521
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=132°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.



12
Задание № 792
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром пред­став­лен эскиз гра­фи­ка функ­ции y  =  2 − (x − 3)2.

1)

2)

3)

4)

5)



13
Задание № 823
i

Урав­не­ние  дробь: чис­ли­тель: 3x минус 2, зна­ме­на­тель: 4 конец дроби плюс 1=x минус дробь: чис­ли­тель: 8 минус x, зна­ме­на­тель: 4 конец дроби рав­но­силь­но урав­не­нию:



14
Задание № 224
i

Соб­ствен­ная ско­рость ка­те­ра в 9 раз боль­ше ско­ро­сти те­че­ния реки. Рас­сто­я­ние по реке от пунк­та A до пунк­та B плот про­плыл за время t1, а катер  — за время t2. Тогда верна фор­му­ла:



15
Задание № 1042
i

ABCDA1B1C1D1  — куб. Точки M и N  — се­ре­ди­ны ребер AD и DC со­от­вет­ствен­но, K при­над­ле­жит A_1D_1, KA_1:KD_1=1:3 (см. рис.). Се­че­ни­ем куба плос­ко­стью, про­хо­дя­щей через точки M, N и K, яв­ля­ет­ся:



16

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB=12, AD=3. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



17
Задание № 437
i

Если  дробь: чис­ли­тель: 3y, зна­ме­на­тель: x конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , то зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 7x плюс 6y, зна­ме­на­тель: 18y минус x конец дроби равно:



18
Задание № 438
i

Наи­мень­шее целое ре­ше­ние не­ра­вен­ства \lg левая круг­лая скоб­ка x в квад­ра­те плюс 2x минус 8 пра­вая круг­лая скоб­ка минус \lg левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка \leqslant\lg3 равно:



19
Задание № 1670
i

Най­ди­те сумму всех целых ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 14\geqslant2x в квад­ра­те минус 6x.



20

На ри­сун­ках 1 и 2 изоб­ра­же­ны пра­виль­ная тре­уголь­ная приз­ма ABCA1B1C1 и ее раз­верт­ка. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти приз­мы, если длина ло­ма­ной ACA1 равна 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та и точки A, C, A1 лежат на одной пря­мой (см. рис. 2).

Рис. 1

Рис. 2



21
Задание № 859
i

Витя купил в ма­га­зи­не не­ко­то­рое ко­ли­че­ство тет­ра­дей, за­пла­тив за них 36 тысяч руб­лей. Затем он об­на­ру­жил, что в дру­гом ма­га­зи­не тет­радь стоит на 2 ты­ся­чи руб­лей мень­ше, по­это­му, за­пла­тив такую же сумму, он мог бы ку­пить на 3 тет­ра­ди боль­ше. Сколь­ко тет­ра­дей купил Витя?


Ответ:

22
Задание № 1010
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 5x плюс 36 конец ар­гу­мен­та =x в квад­ра­те плюс 5x плюс 36.


Ответ:

23
Задание № 411
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 7 умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 x пра­вая круг­лая скоб­ка =245 плюс 2 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 7 пра­вая круг­лая скоб­ка равна ...


Ответ:

24
Задание № 112
i

Пусть (x;y)  — це­ло­чис­лен­ное ре­ше­ние си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 4y плюс x= минус 14,4y в квад­ра­те минус 4xy плюс x в квад­ра­те =16. конец си­сте­мы .

Най­ди­те сумму x+y.


Ответ:

25

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 32 пра­вая круг­лая скоб­ка умно­жить на 11 в сте­пе­ни левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка боль­ше 22 в сте­пе­ни левая круг­лая скоб­ка 2x минус 19 пра­вая круг­лая скоб­ка .


Ответ:

26
Задание № 204
i

Три числа со­став­ля­ют гео­мет­ри­че­скую про­грес­сию, в ко­то­рой q боль­ше 1. Если вто­рой член про­грес­сии умень­шить на 8, то по­лу­чен­ные три числа в том же по­ряд­ке опять со­ста­вят гео­мет­ри­че­скую про­грес­сию. Если тре­тий член новой про­грес­сии умень­шить на 25, то по­лу­чен­ные числа со­ста­вят ариф­ме­ти­че­скую про­грес­сию. Най­ди­те сумму ис­ход­ных чисел.


Ответ:

27
Задание № 385
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=35 гра­ду­сов, \angle ABD = 80 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...


Ответ:

28

Най­ди­те сумму кор­ней урав­не­ния

| левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка | умно­жить на левая круг­лая скоб­ка |x плюс 2| плюс |x минус 8| плюс |x минус 3| пра­вая круг­лая скоб­ка =11 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 6 минус x пра­вая круг­лая скоб­ка .


Ответ:

29
Задание № 717
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |10x минус 8| минус |8x минус 10|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.


Ответ:

30
Задание № 658
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом  дробь: чис­ли­тель: 10, зна­ме­на­тель: 3 конец дроби ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 2S.


Ответ:

31
Задание № 809
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 19 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 19 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 9,5 пра­вая круг­лая скоб­ка 19 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 19 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 19 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 19.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.


Ответ:

32
Задание № 90
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.